Petrogenesis of the Fuko Pass high-pressure metacumulate from the Oeyama peridotite body, southwestern Japan: evidence for Early Paleozoic subduction metamorphism

Tatsuki Tsujimori *

Received July 21, 1998.
Accepted May 27, 1999.
* Department of Earth Sciences, Faculty of Science, Kanazawa University, Kanazawa 920-1192, Japan

Abstract

The kyanite-bearing epidote-amphibolite originated in troctolitic cumulate rock, here defined as "Fuko Pass metacumulate", occurs as a fault-bounded block in the Oeyama peridotite body. The Fuko Pass metacumulate is variously deformed and thoroughly recrystallized into the epidote-amphibolite assemblage: hornblende + clinozoisite + kyanite + paragonite ± muscovite + chlorite + albite (An18-33) ± staurolite (up to Xan = 0.36) ± corundum + rutile ± ilmenite. Kyanite often contains earlier stage plagioclase (An18-33) as tiny inclusions. The Fuko Pass metacumulate is characterized by high Al2O3 (18.9 - 25.5 wt. %), high CaO (13.1 - 15.3 wt. %) and low SiO2 (38.7 - 41.1 wt. %), and bears as much as 66 wt. % normative anorthite and 28 wt. % normative olivine. Its FeO'/MgO ratio is as high as 2.4, and its protolith may be highly fractionated troctolite or anorthosite. The P-T estimation of the kyanite + clinozoisite + paragonite + albite assemblage indicates pressure of 1.5 - 2.1 GPa and temperature of 700 - 850 °C. This condition is only realized at a deeper part of a subduction zone. The breakdown of the kyanite + clinozoisite assemblage into margarite + plagioclase (An18-33) assemblage implies a decompression P-T path passing through the reaction curve: clinozoisite + kyanite + H2O = margarite + anorthite, which occurs about 1.0 ± 0.1 GPa at 550 ± 50 °C.

The high-pressure and moderate-temperature metamorphism of the Fuko Pass metacumulate is not observed in the gabbroic dikes crosscutting residual peridotite of the Oeyama peridotite body. Although the Fuko Pass metacumulate has been regarded as dismembered cumulate member of a successive sequence of the "Oeyama ophiolite", it should be reinterpreted as an exotic block which may have been trapped somehow by any tectonic process. The high-pressure metamorphism preserved in the Fuko Pass metacumulate may imply the beginning of subduction in the paleo-Pacific margin at Early Paleozoic time.

Key words: kyanite-bearing metabasite, epidote-amphibolite facies, retrograde metamorphism, Fuko Pass metacumulate, Oeyama ophiolite, Early Paleozoic orogeny

Introduction

The troctolitic and anorthositic cumulates are common constituent members of the plagioclase-type ophiolites in orogenic belts (e.g. Ishiwatari, 1985). In some ophiolites, such aluminous cumulates generally suffered ocean-floor metamorphism and hydrothermal alteration in a steep geothermal gradient soon after their formation and before their emplacement. However, similar cumulates which have experienced medium- or high-pressure metamorphism often occur as allochthonous fragments or bodies within the regional metamorphic belts in both continental collision zones and active margins (e.g. Yokoyama, 1980; Kunugiza et al., 1986; Cokkin et al., 1988; Efimov and Potopova, 1992; Tenthorey et al., 1996). The high-pressure and moderate-temperature aluminous metacumulates commonly bear kyanite and rarely staurolite in addition to the common amphibolite-facies mineral assemblage (e.g. Gibson, 1978; 1979; Enami, 1980; Spear, 1982; Selverstone et al., 1984; Ward, 1984; Helms et al., 1987; Yokoyama and Goto, 1987; Gil Berguchi et al., 1991; Kuyumjian, 1998). Such a low-variance mineral assemblage and retrograde products of aluminous phases in the metacumulate could allow precise
estimation of P-T path.

The fault-bounded cumulate complex which is now thoroughly recrystallized into epidote-amphibolite facies assemblage including kyanite and staurolite is exposed as the fault-bounded block (or thrust sheet) in the Oeyama peridotite body, easternmost Chugoku Mountains (Kurokawa 1975; Kuroda et al., 1976; Kurokawa, 1985). The metacumulate unit has been regarded as cumulate member of the Oeyama ophiolite, and its metamorphic condition has been estimated to be medium pressure amphibolite-facies (around 0.5 GPa) from the chemistry of hornblende (Kurokawa, 1985). However, the mineral assemblage kyanite + clinozoisite (zoisite) preserved in the metacumulate (Kurokawa, 1985) is stable only in the higher-pressure field greater than around 0.9 GPa (e.g. Storr and Nitsch, 1974; Chatterjee, 1976; Perkins et al., 1980; Jenkins, 1984; Chatterjee et al., 1984), implying metamorphism of at least 25 km depth. In this paper, the author newly defined the epidote-amphibolite as "Fuko Pass metacumulate block", because the metacumulate shows tectono-metamorphic history different from that of the Oeyama ophiolite.

The purposes of this study are (1) to determine the protolith of the Fuko pass metacumulate from the bulk rock composition (major and trace elements), (2) to described petrographic characteristics and to estimate P-T condition and path, and then (3) to discuss tectonic implications of the Fuko Pass metacumulate based on new petrologic data.

Geologic setting

In the Chugoku Mountains of the Inner Zone of southwestern Japan, the 'Oeyama ophiolite' and its equivalents occupy the structurally highest position (Fig. 1) (e.g. Ishiwatari, 1990; Itozaki and Maruyama, 1991; Hayasaka et al., 1995; Tsujimori, 1998; Tsujimori and Itaya, 1999). The Oeyama ophiolite is one of the oldest ophiolites in the circum-Pacific orogenic belt (Ishiwatari, 1994) as old as the Trinity ophiolite of western U.S. A. (Wallin et al., 1988) and an ophiolitic melange of New England Fold Belt in eastern Australia (Aitchison et al., 1992). Although the Oeyama ophiolite does not have complete ophiolitic sequence, it has been generally accepted as an ophiolite nappe, which rests on Late Paleozoic Renge metamorphic belt (including blueschist-bearing serpentinite melange) and the other younger nappes (e.g. Tsujimori and Itaya, 1999). The dismembered ophiolite bodies are composed mainly of moderately deformed harzburgite (residual spinel peridotite) and dunite which are cut by diangle gabbro and dolerite intrusions of MORB-like chemistry. The intrusions commonly occur in peridotite bodies of the Oeyama ophiolite, and recently Hayasaka et al. (1995) preliminarily reported Sm-Nd ages of about 650 Ma for the gabbroic intrusions in central Chugoku Mountains, suggesting formation of the Oeyama ophiolite in Cambrian. The Oeyama harzburgite (Kurokawa, 1985; Uda, 1984) identified it as lherzolite is more fertile than its western counterparts. Podiform chromitites with dunite envelopes are absent in Oeyama, and occur only in the western bodies (Arai, 1986; Matsumoto et al., 1997).

A simplified geologic map of the Oeyama area is shown in Fig. 2. The Oeyama peridotite body (10 km by 3 km in size) may tectonically overlie the Permian accretionary complex on the south (Shinomidami Formation, possibly belonging to Akiyoshi accretionary complex: Ishiga and Suzuki, 1988). The Oeyama peridotite body is mostly composed of massive lherzolitic harzburgite (residual peridotite), which is cut by gabbroic intrusions (diangle gabbro and dolerite) (Uda, 1984; Kurokawa, 1985). The Fuko Pass metacumulate (4.5 km by 1.5 km in size) is exposed only around the topographically highest point of the peridotite body. It gave the hornblende K-Ar ages of 426 and 413 Ma (Nishimura et al., 1990).

Both of Fuko Pass metacumulate and Oeyama peridotite were overprinted by contact metamorphism of the Cretaceous granitic intrusions on the north. Uda (1984) divided the contact aureole into five metamorphic zones: Zone I (anctigorite), Zone II (olivine + antigorite + diopside), Zone III (olivine + antigorite + tremolite), Zone IV (olivine + talc + tremolite + magnesio cummingonite + tremolite) and Zone V (olivine + enstatite + tremolite + hornblende) as approaching the granite. Fuko Pass area belongs to his zone II, but effect of the contact metamorphism is exceptionally scarce in the sampled outcrop.

Sample description and petrography

An outcrop (25 × 5 m) near Fuko Pass described in detail by Kurokawa (1985) is a rare place where one can sample the freshest mafic metacumulate, although considerably weathered in fact. The outcrop is located in the contact aureole (Uda (1984) s zone II) (Fig. 2), but there is almost no overprinting of contact metamorphism. In this outcrop, the...
Fuko Pass high-pressure metagabbro

Fig. 2. Geologic map of the Oeyama area. Lithologic distribution and classification of residual peridotite is based on Uda (1984). Distribution of the Fukos Pass metagabbro and other rocks is based on Kurokawa (1985). Broken lines represent the boundary between Uda (1984)'s metamorphic zones of the contact aureole.

relict massive coarse-grained rocks (metamorphosed clinopyroxenite and metagabbro), virtually undeformed, occur as irregular blocks in the matrix of foliated epidote-amphibolite.

The collected samples are divided into foliated epidote-amphibolite and undeformed metagabbro on the basis of the presence or absence of foliation. The latter is subdivided into leucocratic and melanocratic ones by abundance of clinozoisite. They are characterized by a mineral assemblage hornblende + clinozoisite (± zoisite) + kyanite + paragonite (± muscovite) + chlorite + albite (An$_{0-37}$) + staurolite ± corundum with rutile and ilmenite as accessories. Kyanite often contains earlier stage plagioclase (An$_{0-29}$). In addition to this assemblage, retrograde mineral assemblage margarite + paragonite + chlorite ± plagioclase (An$_{0-29}$) is recognized. Recently, spinel pseudomorphs consisting of corundum-magnetite-gahnite symplectite and relict albinoous clinopyroxene has been found in melanocratic metagabbro ("spinel" metagabbro) (Tsujimori and Ishiwatari, 1998). The texture and modal composition are variable from sample to sample.

1. Foliated epidote-amphibolite

The epidote-amphibolite is moderately foliated, heterogeneous rock. It is commonly medium-grained (1–3 mm), but coarse-grained hornblende (up to 5 mm) is also frequent. Hornblende, clinozoisite and kyanite are major constituent minerals, and they form foliation (Fig. 3a). Kyanite often contains plagioclase (An$_{0-29}$) as tiny inclusion (< 0.03 mm) (Fig. 3b). Paragonite, chlorite, staurolite, albite and rarely muscovite occur as small inclusions in clinozoisite (Fig. 3c). Clinozoisite is optically heterogeneous even in one grain, and zoisite sometimes coexists with clinozoisite. Rutile, ilmenite and sulfide appear as accessories. Ilmenite occurs as both rim and exsolution blebs in rutile. In some cases, large mineral aggregates (up to 5 mm) consisting mainly of staurolite (< 0.05 mm) with minor corundum (< 0.1 mm), chlorite and magnetite are observed. Corundum and magnetite are found only in the aggregates, and kyanite is often observed in the margin of the aggregates. Staurolite of the aggregates is in textural equilibrium with clinozoisite, kyanite, chlorite and corundum (Fig. 3d).

Retrograde minerals occur replacing earlier phases. Margarite often occurs as fibrous coronas replacing kyanite, and paragonite and muscovite are also rarely found in the coronas. Chlorite and tiny plagioclase (An$_{0-29}$) (< 0.05 mm) are rarely observed as retrograde minerals with margarite replacing kyanite. Kyanite is strongly altered when in contact with clinozoisite, but well-preserved when in contact with hornblende. Secondary chlorite sometimes replaces hornblende.

2. Leucocratic metagabbro

The leucocratic metagabbro is coarse-grained (5–15 mm), undeformed rock. It consists mainly of clinozoisite and subordinate amount of hornblende with rutile and magnetite as accessories. Clinozoisite usually contains kyanite, paragonite, chlorite, staurolite and rarely albite as inclusions (Fig. 3e). Kyanite and staurolite occur as euhedral crystal (0.5–2.0 mm) in the clinozoisite-rich domain, and they are often mantled by retrograde margarite and paragonite (Fig. 3f). Staurolite rarely includes paragonite. Retrogression in this rock is more obvious than in the foliated epidote-amphibolite.
3. “Spinel” metagabbro

The “spinel” metagabbro is melanocratic, coarse-grained (5–15 mm), undeformed rock. It consists mainly of hornblende, relict aluminous clinopyroxene (up to 8.3 wt.% Al₂O₃), spinel pseudomorph (corundum-magnetite-gahnite symplectite), clinozoisite-zoisite and chlorite, with small amount of kyanite, magnetite, and secondary margarite. This indicates that the Fuku Pass metacumulate has experienced the granulite facies metamorphism prior to the high-pressure metamorphism characterized by kyanite + clinozoisite assemblage. More detailed petrology of the “spinel” metagabbro will be described elsewhere.

Whole-rock chemistry

The major (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K and P) and trace (Ni, Cu, Zn, Pb, Y and V) elements were analyzed by the Rigaku System 3270 X-ray fluorescence spectrometer with Rh tube at Kanazawa University. The analyses were done at 50 kV accelerating voltage and 20 mA beam current. The other trace elements (Sc, Cr, Co, La, Sm, Eu, Lu and Th) were determined by instrumental neutron activation analysis (INNA method). The INNA samples were activated at the Kyoto University Reactor, and their gamma-ray spectroscopic analyses were done at the Radioisotope Laboratory of Kanazawa University. The result is given in Table 1, and plotted in CaO-MgO, Sr-Ni, and Al₂O₃–FeO*/MgO diagrams (Fig. 4). Whole-rock major element compositions of leucocratic metagabbro, foliated epidote-amphibolite (including Kurokawa (1985)’s data) and “spinel” metagabbro are characterized by high Al₂O₃ (18.9 – 25.5 wt.%), high CaO (13.1 – 15.3 wt.%), low SiO₂ (38.7 – 41.1 wt.%) and low
Table 1. Whole-rock composition of the Fuko Pass metacumulate. Major element composition of epidote-amphibolite described by Kurowaka (1985) is also listed.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Epidote-Amphibolite</th>
<th>Leucocratic Mg-ğabbro</th>
<th>"Spinel" Mg-ğabbro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EO1</td>
<td>LC1</td>
<td>SP1</td>
</tr>
<tr>
<td>SiO₂</td>
<td>41.06</td>
<td>38.70</td>
<td>39.51</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.78</td>
<td>0.78</td>
<td>0.70</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>20.63</td>
<td>23.22</td>
<td>25.64</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>12.78</td>
<td>12.85</td>
<td>10.44</td>
</tr>
<tr>
<td>MgO</td>
<td>0.16</td>
<td>0.15</td>
<td>0.11</td>
</tr>
<tr>
<td>FeO</td>
<td>6.74</td>
<td>6.48</td>
<td>4.38</td>
</tr>
<tr>
<td>CaO</td>
<td>14.08</td>
<td>13.46</td>
<td>15.29</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.84</td>
<td>1.42</td>
<td>0.91</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.36</td>
<td>0.35</td>
<td>0.58</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.05</td>
<td>-</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td>98.50</td>
<td>97.41</td>
<td>97.19</td>
</tr>
</tbody>
</table>

FeO*/MgO: 1.71 1.78 2.14 1.97 0.97 0.94 0.47 0.47 0.52 0.59 0.65 0.65

Trace-element compositions (ppm)

<table>
<thead>
<tr>
<th>Element</th>
<th>EO1</th>
<th>LC1</th>
<th>SP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc</td>
<td>43.3</td>
<td>30.1</td>
<td>34.5</td>
</tr>
<tr>
<td>V</td>
<td>53.6</td>
<td>415.2</td>
<td>425.6</td>
</tr>
<tr>
<td>Cr</td>
<td>32.5</td>
<td>59.2</td>
<td>75.5</td>
</tr>
<tr>
<td>Co</td>
<td>60.7</td>
<td>48.4</td>
<td>40.1</td>
</tr>
<tr>
<td>Ni</td>
<td>18.0</td>
<td>14.1</td>
<td>18.7</td>
</tr>
<tr>
<td>Cu</td>
<td>123.0</td>
<td>273.0</td>
<td>252.0</td>
</tr>
<tr>
<td>Zn</td>
<td>92.0</td>
<td>62.7</td>
<td>71.2</td>
</tr>
<tr>
<td>Rb</td>
<td>16.0</td>
<td>10.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Sr</td>
<td>402.0</td>
<td>479.0</td>
<td>411.0</td>
</tr>
<tr>
<td>Y</td>
<td>20.0</td>
<td>10.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Zr</td>
<td>25.0</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Ba</td>
<td>156.0</td>
<td>192.0</td>
<td>157.0</td>
</tr>
<tr>
<td>La</td>
<td>1.5</td>
<td>n.d.</td>
<td>0.8</td>
</tr>
<tr>
<td>Sm</td>
<td>2.2</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Eu</td>
<td>0.9</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Gd</td>
<td>0.3</td>
<td>0.1</td>
<td>n.d.</td>
</tr>
<tr>
<td>Th</td>
<td>1.0</td>
<td>3.0</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Mg#:Mg/(Mg+Fe²⁺) ratio

Mineralogy

Chemical analyses of minerals were carried out with a JEOL electron-probe microanalyzer JXA-8800R (wavelength-diverse system) at Kanazawa University, and a JEOL JXA-8900R (wavelength-diverse system) at Okayama University of Science. The analyses were done at 15 kV accelerating voltage, 12 nA probe current on Faraday cup with PCD (probe current detector) and 3–5 micrometer probe diameter. Natural and synthetic silicates and oxides are used as standards at both Kanazawa University and Okayama University of Sciences (Tsujimori et al., 1997). The ZAF method was employed for matrix corrections. Ca, Na, K and Al X-ray mapping of retrograde white micas was carried out with a JXA-8800R at 20 kV accelerating voltage and 30 nA probe current. Selected analyses of representative rock-forming minerals are presented in Table 2.

1. Hornblende

The structural formula of hornblende has been calculated using PROBE-AMP program (Tindle and Webb, 1994) that the estimation of Fe²⁺ and Fe³⁺ for calcic amphibole is based on 13 cations (O = 23) excluding Ca, Na and K. The nomenclature of amphibole is based on the classification by Leake (1978).

Amphiboles of the Fuko Pass metacumulate are mostly tschermakitic hornblende and pargasite, excepting those in "spinel" metagabbro (Fig. 5a). They are characterized by high Al₂O₃ content up to 18.0 wt.%. The amphibole of foliated epidote-amphibolite contains 0.62–1.16 Al₂O₃, 6.23–6.72 Si, 0.26–0.49 Na₂O, and 0.11–0.61 (Na + K₂O), and that of leucocratic meta-gabbro bears 0.40–1.03 Al₂O₃, 6.23–6.56 Si, 0.29–0.31 Na₂O, and 0.15–0.70 (Na + K₂O). The compositional trend of amphiboles in the Fuko Pass metacumulate is plotted on the Dalradian field of Laird and Albic (1981)’s Al₂O₃ versus Al₂O₃ + Fe²⁺ + Ti diagram (Fig. 5b), and it roughly corresponds to that of the other Al-rich metabasites in medium to high-pressure metamorphic belts. Mg/(Mg + Fe²⁺) ratio is 0.59–0.79 for the foliated epidote-amphibolite and 0.61–0.78 for the leucocratic metagabbro, and is significantly lower than that of "spinel" metagabbro (0.78–0.92). Although Na₂O, Ti and Na/(Ca + Na) ratio are roughly constant for Fe²⁺/(Fe³⁺ + Mg) ratio and Si, Fe³⁺/(Al₂O₃ + Fe³⁺ + Ti) ratio has linear negative correlation with Fe²⁺/(Fe³⁺ + Mg) ratio.

2. Staurolite

The structural formula of staurolite has been calculated on the basis of O = 46 as Li₂O and H₂O-free. Staurolite of the Fuko Pass metacumulate shows wide variation of the Mg/(Mg + Fe) ratio ranging from 0.16 to 0.36, and it contains significant ZnO (up to 2 wt.%) in solid solution. The composition has a good negative correlation of Fe + Mg + Zn against Si + Al³⁺ + Ti. The correlation overlaps a structural formula. (Mg + Fe)₁₃₋₅Al₁₈₀₋₅₋ₓZnₓO_x represents Mg-rich staurolites in the corundum-bearing epidote-amphibolite of the Sambagawa metamorphic belt (Yokoyama and Goto, 1988). The MgO and Mg/(Mg + Fe) ratio of the foliated epidote-amphibolite is higher than those of the leucocratic metagabbro (Fig. 6a). However, staurolite is richer in ZnO in the leucocratic metagabbro than in the foliated epidote-amphibolite (Fig. 6b). The difference of Mg content in staurolite corresponds to the different whole-rock composition, but Zn content is inconsistent with that (Table 1). Affinity of staurolite for zinc is well known among both metapelites and metabasites (e.g. Goodman, 1993; Sato and Azanon, 1993). Zn content of staurolite of the Fuko Pass metacumulate is higher.
<table>
<thead>
<tr>
<th>Table 2. Selected microprobe analysis of the rock-forming minerals (a) foliated metagabbro; (b) leucocratic metagabbro.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) hornblende</td>
</tr>
<tr>
<td>wt%</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
</tr>
<tr>
<td>TiO₂</td>
</tr>
<tr>
<td>Al₂O₃</td>
</tr>
<tr>
<td>Fe₂O₃*</td>
</tr>
<tr>
<td>MnO</td>
</tr>
<tr>
<td>MgO</td>
</tr>
<tr>
<td>FeO</td>
</tr>
<tr>
<td>Na₂O</td>
</tr>
<tr>
<td>K₂O</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>(b) hornblende</td>
</tr>
<tr>
<td>wt%</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
</tr>
<tr>
<td>TiO₂</td>
</tr>
<tr>
<td>Al₂O₃</td>
</tr>
<tr>
<td>Fe₂O₃*</td>
</tr>
<tr>
<td>MnO</td>
</tr>
<tr>
<td>MgO</td>
</tr>
<tr>
<td>FeO</td>
</tr>
<tr>
<td>Na₂O</td>
</tr>
<tr>
<td>K₂O</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

than the other metamases (Fig 6b). One staurolite grain in the foliated epidote-amphibolite contains up to 1.1 wt% MnO.

In the last decade, Mg-rich staurolite has been treated as a critical mineral of the high to ultra-high pressure metamorphic rocks (e.g. Chopin, 1987; Schreyer, 1988). The Mg-staurolite component in the staurolite solid solution seems to be a function of the metamorphic pressure (Fig 6a). However, the Mg-rich staurolite-bearing rocks generally have extremely high-Mg whole rock chemistry (e.g. Schreyer et al., 1984; Enami and Zhang, 1988; Gil Ibaruchi et al., 1991). The other constituent minerals also have high Mg/(Mg + Fe) ratio consistent with the high-Mg whole-rock chemistry (e.g. Ward, 1986; Yokoyama and Goto, 1987). It is natural to think that the composition of staurolite not only depends on pressure but also on whole-rock chemistry.

3. Clinozoisite and zoisite

Clinozoisite in the Fuko Pass metacumulate mostly has a moderate pistacite molecule (10–24 mol %) (Fig 7). Zoisite contains 3–7% pistacite molecule, and it coexists with heterogeneous clinozoisite with moderate pistacite molecule. The clinozoisite with considerably higher pistacite component (26–29 mol %) is rarely found in the foliated epidote-amphibolite and “spinel” metagabbro.

Naturally coexisting zoisite-clinozoisite pairs were examined by Enami and Banno (1980), and the relationship between their compositions and temperature was experimentally determined by Prunier and Hewitt (1985). In the Fuko Pass metacumulate, compositions of the coexisting zoisite and clinozoisite pairs suggest approximate temperatures up to 600°C.
Fig. 4. (a) CaO versus MgO (wt.%), (b) FeO*/MgO versus Al2O3 (wt.%) and (c) Ni (ppm) versus Sr (ppm) diagrams showing chemical characteristics of the Fuko Pass metacumulate. The compositions of cumulate rocks of the Oman ophiolite and the other kyanite-bearing metabasites are also plotted for comparison.

Fig. 5. Chemical composition of amphiboles. (a) Si versus (Na+K)A, diagram. (b) Laird and Albee (1981)'s AlIV versus AlV + FeIII + Ti diagram for amphiboles. The amphibole compositions from the other kyanite-bearing metabasites are also plotted.

4. White micas (margarite-paragonite-muscovite)

Paragonite and muscovite of early stage occur as inclusions within clininozoisite and staurolite (only paragonite), suggesting that they were in equilibrium with the host minerals or crystallized earlier than the host. On the other hand, retrograde margarite occurs replacing of kyanite, and it often coexists with retrograde paragonite and muscovite. Chemical compositions of white micas are shown in the paragonite (Na) - muscovite (K) - margarite (Ca) ternary diagrams (Fig. 8). The paragonite inclusion has composition of Pg0.30Mrg, 0.3Ms, 0.4 in...
Fig. 6. Frequency distribution of (a) the values of Mg/(Mg + Fe) ratio and (b) ZnO content (wt.%) for staurolite. The staurolite compositions from the other metabasites are also plotted. Metabasites: 1: metatrotoclitite, Fjordland, New Zealand (Ward, 1984); 2: amphibolite, Fjordland, New Zealand (Gibson, 1978); 3: Ky-St amphibolite, Chapadacrioc, central Brazil (Kuyuyen, 1998); 4: eclogitic epidote-amphibolite, Sambagawa metamorphic belt, SW Japan (Yokoyama and Goto, 1987); 5: metabasaltic rock and eclogite, Cabo Ortegal, NW Spain (Gil Ibarzuchi et al., 1991); 6: Hbl-Ky-St schist, Tauern Window, Austria (Selverstone et al., 1984); 7: amphibolite, Vinjamara, South India (Moer, 1991); 8: mafic metabasite, Betic Cordillera, SE Spain (Sato and Azanon, 1993); 9: amphibolite, Laurel Creek, Georgia Blue Ridge, U.S. (Helmis et al., 1987); 10: Amphibolite, Mt. Cube de la Grange, Vermont, U.S. (Spear, 1982); 11: Tl-Pbl-Crn-Chl schist, Victoria Land, Antarctica (Grew and Sandford, 1984); 12: metatrotoclitites, Vojibory, Madagascar (Nicollet, 1986); 13: Gt-Crn rock and eclogite, Donghai, East China (Enami and Zang, 1988)] Metapelites: 1: Sapphirine-garnet rocks, Limpopo Belt, (Schreyer et al., 1984); 2: Khondalites and pelitie granulite, Sri Lanka (Hiroi et al., 1994); 3: Pelitic gneiss, East Antarctica (Grew et al., 1990); 4: Pelitic gneiss, Hidaka metamorphic belt, Japan (Ozawa and Owada, 1990); 5: Pelitic schist, Unazuki metamorphic belt, Japan (Hiroi, 1983); 6: high-Al pelitic schist cobbles, Tertiary Formation Japan (Tsujimori, 1995); 7: amphibolite-facies metapelites (Holdaway et al., 1986).

clinozoisite of the foliated epidote-amphibolite, and Pe.8-9Mg2.1-3Ms0.9 in the leucocratic metagabbro. On the other hand, paragonite inclusion within staurolite is extremely rich in margarite molecule, and has an intermediate composition between paragonite and margarite (P3.8-9Mg2.1-3Ms0.9). In the foliated epidote-amphibolite, muscovite that rarely occurs as inclusion within clinzoisite, has a significantly higher paragonite molecule (P3.8-9Mg2.1-3Ms0.9). X-ray element mapping for Ca, Na, K and Al of retrograde white micas in the leucocratic metagabbro is shown in Fig. 9. Most margarite built up coronitic aggregates around kyanite and staurolite. Paragonite and muscovite partly replace kyanite. This textural relation indicates that association of three white micas postdated kyanite and clinzoisite. Margarite has wide compositional range on the paragonite-margarite join. They have a composition of Pe.8-9Mg2.1-3Ms0.9 in the foliated epidote-amphibolite and Pe.8-9Mg2.1-3Ms0.9 in the leucocratic metagabbro. Although the retrograde paragonite in the foliated epidote-amphibolite is too fine to be analysed with electron probe microanalyzer, the retrograde paragonite (Pe.8-9Mg2.1-3Ms0.9) in the leucocratic metagabbro has a composition similar to that of inclusion within clinzoisite. Retrograde muscovite is characterized by low paragonite molecule, and its composition

Fig. 7. Frequency distribution of the values of Fe3+/Al+Fe3+ ratio for clinzoisites and zoisites in (a) foliated epidote-amphibolite, (b) leucocratic metagabbro and (c) "spinel" metagabbro.

(a) foliated epidote-amphibolite

(b) leucocratic metagabbro

(c) "spinel" metagabbro

XFe 3+ = Fe 3+/(Fe 3+ + Al)

XFe 3+ = Fe 3+/(Fe 3+ + Al)

XFe 3+ = Fe 3+/(Fe 3+ + Al)
Fig. 8. The paragonite (Na)-muscovite (K)-margarite (Ca) ternary diagrams for white micas. Compositional ranges compiled by Frey et al. (1982) and Guidotti (1984) and the those of corundum-rocks from Westland, New Zealand (Grapes and Palmer, 1996) are also shown.

Fig. 9. EPMA X-ray element mapping for Ca, Na, K and Al of retrograde white micas in the leucocratic metagabbro.
is PgrMrg3Ms4 in the foliated epidote-amphibolite and Pgr3Mrg6Ms4 in the leucocratic metagabbro. The diocthedral white mica solid solution between paragonite, muscovite and margarite end-members shows wide immiscibility (Fig. 8). The coexisting margarite-paragonite or margarite-muscovite pairs have been reported from some margarite localities (e.g. Ackerman and Morteani, 1973; Enami, 1980; Silverstone et al., 1984; Grapes and Palmer, 1996). The coexisting margarite-paragonite-muscovite three mica assemblage has also rarely been described (e.g. Hock, 1974; Guidetti et al., 1979; Okuyama-Kusunose, 1985; Shiha et al., 1988).

5. Plagioclase

Three different generations of plagioclase are observed in the Fuko Pass metacumulate. Anorthite component in each occurrence is shown in Fig. 10. Albite occurring as inclusion in clinozoisite has 0 – 13 mole % anorthite in solid solution. On the other hand, plagioclase inclusions within kyanite are considerably much calcic, containing 26 – 33 mole % anorthite. The retrograde plagioclase, which occurs as replacement products of kyanite and coexists with margarite, contains 18 – 38 mole % anorthite.

6. Other minerals

Kyanite contains significant Fe2O3 (0.7 – 13 wt.%) in solid solution. No chemical difference of kyanite is observed between the foliated epidote-amphibolite and leucocratic metagabbro. Corundum contains 0.8 – 1.2 wt.% Fe2O3. Its Fe2O3 content is significantly higher than that of corundum in metasomites from the other localities (mostly less than 0.4 wt.% e.g. Minakawa and Momoi, 1982; Enami and Zhang, 1988; Morishita and Kodera, 1998).

Chlorite in the foliated epidote-amphibolite is richer in Mg/(Mg + Fe) ratio (0.71 – 0.77) than that of the leucocratic metagabbro (0.64 – 0.67), assuming no ferric iron. This suggests the control of whole-rock composition on the chlorite compositions. Chlorites in both foliated epidote-amphibolite and leucocratic metagabbro are characterized by low Si (5.3 – 5.5 p.f.u. for O = 28) and high Al (5.1 – 5.8 p.f.u.), and plotted within the field of epidotolite composition (Hey, 1954). No systematic chemical difference is observed in spite of their texture. Rutile bears 0.3 – 0.8 wt.% Fe2O3. Ilmenite contains up to 2.0 wt.% MnO.

Discussion

1. Origin of the Fuko Pass metacumulate

Although the Fuko Pass metacumulate block had been thoroughly metamorphosed and variously deformed, the bulk rock composition (major and trace elements) and normative mineralogy constrain cumulus origin. In the Fuko Pass metacumulate here studied, 48 – 66 wt. % normative anorthite and 16 – 28 wt. % normative olivine are calculated. The compositional variability is best illustrated in Fig. 4. The negative correlation between CaO and MgO (Fig. 4a) indicates mixture of anorthitic plagioclase and olivine. This is compatible with a negative correlation between Sr and Ni, which are concentrated in plagioclase and olivine, respectively (Fig. 4b). The leucocratic metagabbro shows more fractionated feature than epidote-amphibolite and “spinel” metagabbro. Al2O3 is increasing with FeO/MgO (Fig. 4c). It may correspond to modal increase of anorthite-rich plagioclase with fractionation. The FeO/MgO ratio of the Fuko Pass metacumulates (0.9 – 2.1) are considerably higher than the mafic cumulate rocks of the Oman ophiolite (Benoit et al., 1996) and the other kyanite-bearing metasomites of cumulate origin excepting for meta-anorthosite of Western Gneiss Region (Cotkin, 1997). This suggests the high degree of fractionation for magma that produced the protoliths of the Fuko Pass metacumulate.

The troctolitic and anorthositic cumulate occurs commonly in the plagioclase-type ophiolites (i.e. lower portion of oceanic crust) or in large layered plutonic complex such as Bushveld and Stillwater. In the Fuko Pass metacumulate, melanoocratic metagabbro (“spinel” metagabbro) preserves granulite-facies minerals prior to epidote-amphibolite facies (Tsujimori and Ishiwatari, 1998). It is possible that the Fuko Pass metacumulate represent a lower part of unusually thick oceanic crust beneath oceanic plateau or oceanic island arc, because the granulite-facies metamorphic condition is realized in the lower part of 15 – 40 km-thick crust.

2. Metamorphic condition

Although any geothermometers based on Fe-Mg exchange reactions are not applicable for the Fuko Pass metacumulate, its approximate P-T condition can be deduced by the mineral assemblage. In the Fuko Pass metacumulate, some important reaction lines, which have been experimentally determined or thermodynamically calculated, constrain their metamorphic P-T condition and path. The thermodynamic calculations in this paper are based on THERMOCALC (ver. 2.5) program (Powell and Holland, 1988; Holland and Powell, 1990).

High-pressure metamorphic stage

1) Kyanite + paragonite + albite + clinozoisite assemblage

The assemblage kyanite + clinozoisite (zoisite) is stable at the pressure higher than about 0.9 GPa in the pure CASH (CaO-Al2O3-SiO2-H2O) system (e.g. Storre and Nitsch, 1974; Chatterjee, 1976; Perkins, 1979; Jenkins, 1984; Chatterjee et al., 1984; Halbach and Chatterjee, 1984). The simplified CASH reactions:

- clinozoisite + kyanite + H2O = margarite + quartz (1).
- clinozoisite + kyanite = margarite + anorthite (2), and
- clinozoisite + kyanite = anorthite + corundum + H2O (3).

give low pressure limit for the assemblage clinozoisite +
kyanite in the CASH system (Fig. 11), though the location of the stability field in the P-T space is significantly moved by the effects of solid solution. The stability field is moved to the low pressure side by the increase of pistacite component in clinzoisite and to higher pressure side by the increase of albite component in plagioclase. The presence of earlier stage plagioclase (An$_{30-35}$) in kyanite gives low-pressure and high-temperature limits for high-pressure stage (Fig. 12).

As mentioned before, clinzoisite contains kyanite, paragonite and albite, which are in textural equilibrium with host clinzoisite. The simplified CASH and NASH (Na$_2$O-Al$_2$O$_3$-SiO$_2$-H$_2$O) reactions:

\text{clinzoisite} + \text{kyanite} = \text{anorthite} + \text{corundum} + \text{H}_2\text{O} (3),

\text{paragonite} = \text{jadeite} + \text{kyanite} + \text{H}_2\text{O} (4), and

\text{paragonite} = \text{jadeite} + \text{kyanite} + \text{H}_2\text{O} (5),

define pressure-temperature limit for the assemblage kyanite + paragonite + albite + clinzoisite. If the clinzoisite ($a_{cl} = X_{cl} = 0.6$) and plagioclase ($a_{pl} = X_{pl} = 0.26$), where a_i is activity of the mineral end-member i, are applied for the thermodynamic calculation, the pressure-temperature condition is limited at a P-T space of 1.5 – 2.1 GPa at 700 – 850°C.

2) Kyanite- and staurolite-bearing assemblage

The Fuko Pass metacumulate includes the unusual mineral assemblage of hornblende + kyanite + staurolite. This assemblage has only been observed from some high-pressure and intermediate temperature metabasites (e.g. Fiordland, New Zealand; Gibson, 1978; Tauern Window, Austrian Alps; Selverstone et al., 1984; Blue Ridge, Appalachians: Helms et al., 1987; Iberian massif: Gil Bargaruchi et al., 1991; Chapada, Brazil: Kuyumjian, 1988). Selverstone et al. (1984) and Helms et al. (1987) argued that an assemblage kyanite + staurolite + hornblende reflects pressures higher than those appropriate for the stability of the common amphibolite assemblage. Foerster and Hall (1983) presented a Schreinemakers' nets which clearly constrains the natural occurrences of the assemblage kyanite + staurolite to higher pressure condition than the common amphibolite assemblage. Recently, Lattard and Bubnik (1995) experimentally revealed that the complete Fe-Mg solid solution of staurolite is stable at 720 – 800°C at 2 GPa with or without oxygen buffers (WM, NNO, and MH) in the system FMASH (FeO-MgO-Al$_2$O$_3$-SiO$_2$-H$_2$O). Furthermore, Daniels et al. (1996) found staurolite (Mg/(Mg + Fe) = 0.21) inclusion in a diamond crystal from the Dokolwayo kimberlite, NE Swaziland. This suggests that Mg content of natural staurolite may do not depend on pressure. Schreyer (1988) argued that Mg-staurolite was produced by the low-temperature reaction in the system.
Fig. 12. Pressure-temperature diagram showing estimated metamorphic conditions (lined areas) and decompression P-T path (solid arrow) of the Fuko Pass metacumulate. The anorthite-isopleths for early stage plagioclase (An$_{50}$) and secondary plagioclase (An$_{30}$) define the P-T limits for the high-pressure stage and retrograde stage, respectively. The small P-T diagram showing the calculated stability fields of clinozoisite ($a_c=1.0$) + kyanite and clinozoisite ($a_c=0.6$) + kyanite. Staurolite-producing reaction line, which experimentally determined by Fockenberg (1998) is also presented. The approximate geothermal gradients (10$^°$/km and 20$^°$/km) are also drawn. Abbreviations [Qtz: quartz, Ab: albite, Pg: paragonite, Jd: jadeite, Lws: lawsonite, Mrg: margarite, Dsp: diaspor, An: anorthite, Czo: clinozoisite, Crn: corundum, Chl: chlorite, St: staurolite, Ky: kyanite, Sill: sillimanite, And: andalusite].

MASH (MgO-Al$_2$O$_3$-SiO$_2$-H$_2$O):

chilnochlor + kyanite + corundum = Mg-staurolite

Recently, this reaction was experimentally determined and it takes place under about 2.3 GPa at 630°C and 1.1 GPa at 760°C (Fockenberg, 1998). In the foliated epidote-amphibolite, staurolite (Mg/(Mg + Fe) ratio = 0.36 at maximum) accompanies corundum, chlorite and kyanite. It is possible that the temperature condition lies around the reaction curve (6) (Fig. 12).

Retrograde metamorphism and decompression P-T path

Retrograde P-T path is well-documented by the breakdown of the assemblage clinozoisite + kyanite to produce margarite and plagioclase by decompression. In the Fuko Pass metacumulate, the presence of Ca-bearing plagioclase (An$_{25-35}$) coexisting with retrograde margarite indicates a decompression P-T path passing from the clinozoisite + kyanite field through the reaction line (2). The breakdown texture of kyanite indicates that the Fuko Pass metacumulate must pass through a reaction line (2). Although the location of the reaction in the P-T space is significantly moved by the effects of solid solution, the analysed composition of secondary plagioclase ($a_n = X_{an} = 0.18 - 0.38$) gives about 1.0 ± 0.1 GPa at 550 ± 50°C (Fig. 12).
The paragonite-muscovite solvus was studied by many authors (e.g., Guidotti et al., 1994). The presence of paragonite-muscovite pairs of two generations can further constrain the P-T retrogression path. The paragonite-muscovite geothermometer of Blencoe et al. (1994) gives about 600°C for the inclusion pairs in the foliated epidote-amphibolite and about 480°C for the retrograde pairs in the leucocratic metabasalt. Franz et al. (1977) experimentally determined a miscibility gap in the margarite-paragonite join at 0.1 – 0.5 GPa. The solvus which exists in the region between 20 and 50 mole % margarite at 400°C narrows and is closed at about 600°C. The extremely margarite-rich paragonite occurring as inclusions in staurolite suggests a temperature higher than 600°C.

The hornblende K-Ar ages of 413 – 426 Ma of the Fuko Pass metacumulate reported by Nishina et al. (1990) may correspond to the time when the rocks passed the closure temperature (ca. 500°C) during decompression.

3. Tectonic implications

Is the Fuko Pass metacumulate unit exotic?

Kurokawa (1985) had reconstructed an ophiolitic sequence consisting of residual peridotite, ultramafic to mafic cumulate and gabbroic intrusions. If the metacumulate unit had been a part of successive sequence of the Oeyama ophiolite, the other constituent members (residual peridotite and gabbroic intrusions) should also have suffered high-pressure and moderate-temperature metamorphism together with the metacumulate unit. However, any evidence of such high-pressure and moderate-temperature metamorphism (about 1.5 – 2.1 GPa at 700 – 850°C) is observed neither in residual peridotite nor gabbroic intrusions. Such high-pressure and moderate-temperature condition is only realized at a deeper part of a subduction zone. Thus, it is interpreted that the Fuko Pass metacumulate is an exotic block which may have been trapped somehow by tectonic process.

Paleozoic metamorphic rocks associated with the Oeyama ophiolite

Some peridotite bodies of the Oeyama ophiolite in the Chugoku Mountains include tectonic block of various metamorphic rocks. A serpentinite melange containing blueschist blocks, which yield ca. 320 Ma phengite K-Ar ages, develops beneath a peridotite body of the Oeyama ophiolite in central Chugoku Mountains (Osayama serpentinite melange: Tsujimori, 1998; Tsujimori and Itaya, 1999). The Osayama blueschist is originated in the Renge metamorphic belt. On the other hand, Early Paleozoic amphibolite or metagabbro (highly recrystallized) occurs in eastern peridotite bodies (Kurokawa, 1985; Nishimura and Shibata, 1989; Nishina et al., 1990). Some gneissesose amphibolites with 444 – 469 K-Ar hornblende age occur as tectonic blocks in the Wakasa peridotite body which tectonically overlies the Renge schist (e.g., Uemura et al., 1979). These amphibolite blocks underwent amphibolite or epidote-amphibolite facies metamorphism, and bear following mineral assemblages: hornblende + plagioclase, hornblende + clinopyroxene + plagioclase, hornblende + garnet + plagioclase and hornblende + epidote + plagioclase (Nishimura and Shibata, 1989). In the Wakasa and Izushi bodies, some coarse-grained clinopyroxenites were thoroughly recrystallized, and hornblende, clinopyroxene, and rutile occur as metamorphic minerals (T. Tsujimori, unpublished data). Although the critical minerals indicating high-pressure moderate-temperature mineral such as kyanite have not yet been reported, the rutile-bearing assemblage in the meta-clinopyroxenite, possibly cumulate origin, is similar to the Fuko Pass metacumulate. The metamorphism of these amphibolites associated in the Oeyama ophiolite has been considered as ocean-floor metamorphism, and their K-Ar hornblende age has been regarded as timing of the ocean-floor metamorphism (e.g., Nishimura and Shibata, 1989; Nishina et al., 1990). However, it should be interpreted as fragments of the regional metamorphic belt which have been subjected to subduction during Early Paleozoic, and then tectonically trapped into residual peridotite of the Oeyama ophiolite.

Geologic significance of the Fuko Pass high-pressure metacumulate

In southwestern Japan, the Ordovician schists of Kurosegawa belt (Maruyama and Ueda, 1974) is an evidence for an incipient subduction of the paleo-Pacific plate (e.g., Isozaki, 1996; Maruyama, 1997), although typical blueschists appear only after Devonian time as reviewed in Tsujimori and Itaya (1999). The high-pressure metamorphism preserved in the Fuko Pass metacumulate may also indicate the beginning of subduction in a paleo-Pacific margin at Early Paleozoic time.

The residual peridotite and gabbroic intrusions of the Oeyama ophiolite have been interpreted as a supra-subduction zone lithosphere possibly of primitive arc or back-arc setting (e.g., Arai and Yurimoto, 1994; Tsujimori and Itaya, 1999). It is difficult to expect high-pressure and moderate-temperature metamorphism at back-arc basin environment. The high-pressure metamorphism and the presence of relict spinel-granulite of the Fuko Pass metacumulate may suggest that the Fuko Pass metacumulate represents a fragment of subducted plutonic complex, probably lower part of an oceanic plateau, and emplaced as tectonic block into the hanging wall peridotite (present Oeyama ophiolite) after subduction. The decompression P-T path of the Fuko Pass metacumulate may imply initial subduction of a thick-crusted oceanic plateau or oceanic-arc and its subsequent exhumation.

Acknowledgments

I express sincere thanks to Dr. A. Ishiwatari for his valuable advises and critical reading of the manuscript. I am also
grateful to Professor T. Itaya for microprobe analysis at Okayama University of Science. I appreciate Dr. M. Enami of Nagoya University, who kindly gave critical suggestions for metamorphism of the Fuko Pass metacumulate. I am much indebted to Professor S. Arai, Drs. A. Toramaru, Y. Tamura and T. Morishita for their discussions. Messrs. H. Shukumo, M. Motoya and D. Saito are also thanked for their help in laboratory works. Dr. K. Kunugiza is thanked for his valuable suggestions and constructive criticisms. This study was supported financially in part by JSPS Research Fellowships for Young Scientists.

References

and correlations: the system K₂O·Na₂O·CaO·MgO·MnO·FeO·Fe₂O₃·Al₂O₃·TiO₂·SiO₂·C·H₂·O. *Jour. Metam. Geol.*, 8, 89-124.

Ishiwatari, A. 1990. Yakumo ophiolite and related rocks in Maizuru terrane. In K. Ichihara et al., eds., *Pre-Cretaceous Terranes of Japan*, IGC Project 224, Osaka City University, 109-120.

* in Japanese with English abstract
** in Japanese
*** in Russian
**** in French with English abstract

(要旨)

京都府北部、大江山かんらん岩体に産する藍晶石や十字石を含む変成デカル基体（昔甲高圧変成デカル基体）の地球化学的特徴及び変成作用、変成経路を明らかにした。全岩化学組成及び計算されたノルム細目は、灰長石に富み非常に分化したトロクロライトの混成岩の一部であったことを示唆する。昔甲高圧変成デカル基体はホルンブレッド+クリノゾイサイト（+ソイサイト）+藍晶石（An_{35-50}の斜長石包有物を含む）+パラガタイト+マスコバイト+緑泥石+香長石+十字石+コランダム+リチウムマネライトの鉱物組み合わせで特徴づけられ、藍晶石+パラガタイト+香長石+クリノゾイサイトの共生関係から約1.5-2.1 GPa, 700-850 ℃の高圧中温の変成条件が推定される。また、二次的な亜斑のマーガライト、パラガタイト（マスコバイト）、斜長石（An_{35-50}）、緑泥石が藍晶石を置換する。藍晶石とクリノゾイサイトの分解反応によるマーガライトと斜長石の形成は、減圧（上昇）のP-T経路を示す。これまで、この変成デカル基体は大江山オイライサイトの層序の一部と考えられてきたが、その岩学的特徴から大江山かんらん岩体とは異なる古生代前期高圧型広域変成岩の異質ブロックであって、構成的にかんらん岩体に取り込まれたものである。